Skip to content

alphafold2安装

分享者:bioinfo02


更新时间:20241018

alphafold2安装

在工作站配置

先下载alphafold2:

git clone https://github.com/deepmind/alphafold.git

cd ./alphafold

安装aria2:

sudo apt install aria2

下载alphafold2的database:

法一:使用命令的代码:scripts/download_all_data.sh /data1/program/alphafold/alphafold_data > download.log 2> download_all.log &

法二:wget -c (这个download_all_data.sh里面的所有软件包)

法三:是用迅雷快一些

安装docker

docker安装alphafold2(失败,下不了显卡驱动)

sudo docker build -f docker/Dockerfile -t alphafold .

使用conda安装:

Create a new conda environment and update

conda create --name alphafold python==3.8
 conda update -n base conda 

Activate conda environment

conda activate alphafold

Install dependencies

c

onda install -y -c conda-forge openmm==7.5.1 cudatoolkit==11.2.2 pdbfixer

conda install -y -c bioconda hmmer hhsuite==3.3.0 kalign2

pip install absl-py==1.0.0 biopython==1.79 chex==0.0.7 dm-haiku==0.0.9 dm-tree==0.1.6 immutabledict==2.0.0 jax==0.3.25 ml-collections==0.1.0 numpy==1.21.6 pandas==1.3.4 protobuf==3.20.1 scipy==1.7.0 tensorflow-cpu==2.9.0

pip install --upgrade --no-cache-dir jax==0.3.25 jaxlib==0.3.25+cuda11.cudnn805 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html

Download alphafold release v2.3.1

wget https://github.com/deepmind/alphafold/archive/refs/tags/v2.3.1.tar.gz && tar -xzf v2.3.1.tar.gz && export alphafold_path="$(pwd)/alphafold-2.3.1"

Download chemical properties to the common folder

wget -q -P $alphafold_path/alphafold/common/ https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt

Apply OpenMM patch

cd ~/anaconda3/envs/alphafold/lib/python3.8/site-packages/ && patch -p0 < $alphafold_path/docker/openmm.patch

Download all databases

使用迅雷更快一些

Download run script

run_alphafold.sh

Run alphafold2

bash run_alphafold.sh -d ../../alphafold2_database/ -o ./dummy_test/ -f ../test.fasta -t 2020-05-14

但是运行的时候报错了jaxlib问题:

解决方法:

安装cuda12.2:

使用以下命令卸载旧版本的CUDA:

sudo apt-get --purge remove "cuda*"

sudo apt-get --purge remove "libcudnn*"

sudo apt-get autoremove

2. 添加新的CUDA存储库

根据需要的CUDA版本,访问NVIDIA的CUDA Toolkit Archive页面,找到对应版本的安装命令或下载链接。

sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub

sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"

如果使用的是其他Ubuntu版本,请根据版本调整存储库地址。例如:

  • Ubuntu 22.04: ubuntu2204
  • Ubuntu 18.04: ubuntu1804

3. 安装CUDA 12.2

更新包列表并安装CUDA 12.2:

sudo apt-get update

sudo apt-get -y install cuda-12-2(报错啦

if报错:(hello上的问题(2024/9/16))

错误一:W: 无法下载 http://dell.archive.canonical.com/dists/focal/InRelease 无法连接上 dell.archive.canonical.com:80 (185.125.189.10),连接超时 [IP: 185.125.189.10 80]

解决方法:

sudo vim /etc/apt/sources.list.d/dell.sources.list

找到相关的dell存储库文件,然后编辑它,注释掉该行(在行前加#):

# deb http://dell.archive.canonical.com/

sudo apt-get update

又遇到了一个错误:E: 仓库 “https://download.docker.com/linux/ubuntu focal Release” 不再含有 Release 文件。

sudo vim /etc/apt/sources.list.d/docker.list

找到以下行:

deb [arch=amd64] https://download.docker.com/linux/ubuntu focal stable

将focal改为bionic或jammy(具体取决于你当前的系统兼容性),例如:

deb [arch=amd64] https://download.docker.com/linux/ubuntu jammy stable (失败)

sudo apt-get update (失败)

换成:

deb [arch=amd64] https://download.docker.com/linux/ubuntu bionic stable (成功啦)

sudo apt-get update (成功啦)

if 报错:(gpu集群(2024/9/17))

错误:The following packages have unmet dependencies: cuda-12-2 : Depends: cuda-runtime-12-2 (>= 12.2.2) but it is not going to be installed Depends: cuda-demo-suite-12-2 (>= 12.2.140) but it is not going to be installed E: Unable to correct problems, you have held broken packages.

解决方法:

法1:

sudo apt-get install -f

sudo apt-get clean

sudo apt-get autoremove

sudo apt-get update

sudo apt-get install cuda-12-2

sudo apt-get install cuda-runtime-12-2 cuda-demo-suite-12-2(又失败啦)

法2:如果问题仍然存在,手动安装缺失的依赖项:

sudo apt-get install cuda-runtime-12-2 cuda-demo-suite-12-2(又失败啦

法3:使用aptitude来解决依赖问题**(成功啦 ( ̄▽ ̄))**

aptitude可以提供更多的解决依赖问题的选项。首先安装aptitude:

sudo apt-get install aptitude

sudo aptitude install cuda-12-2

4. 更新环境变量

安装完成后,修改~/.bashrc文件中的环境变量:

vim ~/.bashrc

export PATH=/usr/local/cuda-12.2/bin{PATH:+:}

export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64\

{LD_LIBRARY_PATH:+:}

source ~/.bashrc

5. 验证安装

使用以下命令验证CUDA 12.2是否安装成功:

nvcc --version

使用:(路径/platform_data/Software/alphafold-2.3.1/)

在github上下载:https://github.com/kalininalab/alphafold_non_docker/blob/main/run_alphafold.sh

for i in (cat pro_name.txt);do bash run_alphafold.sh -d /data1/program/alphafold/alphafold_data/ -o ./dummy_test/ -f /data1/program/alphafold/alphafold_pro/ -t 2020-05-14 -g true;done